A nonprofit publication of the Kentucky Center for Public Service Journalism

NKU professor Dirk Grupe involved in research showing one of the universe’s massive black holes


Research conducted by Dr. Dirk Grupe, NKU associate professor and chair of the Department of Physics, Geology and Engineering Technology, and colleagues at the Max-Planck-Institute for Radio Astronomy in Germany, has been accepted in the Monthly Notices of The Royal Astronomical Society and the Astrophysical Journal.

The research shows that one of the universe’s most massive black holes, located at the center of galaxy OJ 287 nearly 5.1 billion light years away, is the size of 100 million solar masses instead of the previously believed 10 billion solar masses.

“I’m incredibly proud that the collaboration between NKU and Max-Planck-Institute for Radio Astronomy has led to these significant findings that will alter the way we look at this binary black hole system now,” Dr. Grupe said.

The international research group, led by Stefanie Komossa from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and including Dr. Grupe, was able to test crucial binary model predictions using multiple observing tools including the Effelsberg radio telescope and the Neil Gehrels Swift Observatory. There were also collaborators from institutions in China, Chile, Canada and Spain. For the first time, an independent black hole mass determination of the system was performed and the amount of matter in a disk surrounding the black hole could be estimated.

The left panel shows a deep ultraviolet image of OJ 287 and its environment taken with Swift, one of the deepest UV images of that part of the sky ever taken, combining 560 single exposures. The black hole region itself cannot be resolved in the UV image. The right panel depicts an artist’s view of the very center of OJ 287, including the accretion disk, the jet, and a second black hole orbiting the primary black hole which has a mass of 100 million solar masses. (From Max Planck Institute website)  

The results show that an exceptionally massive black hole exceeding 10 billion solar masses is no longer needed. Instead, the results favor models with a smaller black hole mass of 100 million solar masses. Several outstanding mysteries, including the apparent absence of the latest big outburst of OJ 287 (which has now been identified) and the much-discussed emission mechanism during the main outbursts, can be solved this way.

Findings of this research have strong implications for the theoretical modeling of supermassive black hole binary systems and their evolution. There are also implications for understanding the physics of accretion and jet launching near supermassive black holes, for future pulsar timing vs. space-based gravitational wave detection from this system, and a direct spatial resolution of this system with the Event Horizon Telescope or the future SKA Observatory. The findings are presented in two papers published in MNRAS Letters and the Astrophysical Journal.

For more information on the research and its findings, click here.

To learn more about the NKU Department of Physics, Geology and Engineering Technology, visit its website


Related Posts

Leave a Comment